Identification of actin nucleation activity and polymerization inhibitor in ameboid cells: their regulation by chemotactic stimulation

نویسندگان

  • A L Hall
  • V Warren
  • S Dharmawardhane
  • J Condeelis
چکیده

Actin polymerization occurs in amebae of Dictyostelium discoideum after chemotactic stimulation (Hall, A. L., A. Schlein, and J. Condeelis. 1988. J. Cell. Biochem. 37:285-299). When cells are lysed with Triton X-100 during stimulation, an actin nucleation activity is detected in lysates by measuring the rate of pyrene-labeled actin polymerization. This stimulated nucleation activity is closely correlated with actin polymerization observed in vivo in its kinetics, developmental regulation, and cytochalasin D sensitivity. Actin polymerization is coordinate with pseudopod extension in synchronized populations of cells and is correlated with the accumulation of F actin in pseudopods. The stimulated actin nucleation activity is present in low-speed pellets from Triton lysates (cytoskeletons) within 3 s of stimulation and is stable compared with the nucleation activity of whole cell lysates. Low-speed supernatants contain a reversible inhibitor of the actin nucleation activity that is itself regulated by chemotactic stimulation. Neither activity requires Ca2+ and both are fully expressed in 10 mM EGTA. Fractions containing the inhibitor do not sever actin filaments but do inhibit actin polymerization that is seeded by fragments of purified F actin. These results indicate that chemotactic stimulation of Dictyostelium discoideum generates both an actin-nucleating activity and an actin-polymerization inhibitor, and suggest that the parallel regulation of these two activities leads to the transient phases of actin polymerization observed in vivo. The different compartmentation of these two activities may account for polarized pseudopod extension in gradients of chemoattractant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capping Protein Terminates but Does Not Initiate Chemoattractant-induced Actin Assembly in Dictyostelium

The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although un...

متن کامل

An actin-nucleating activity in polymorphonuclear leukocytes is modulated by chemotactic peptides

We examined the actin-nucleating activity in polymorphonuclear leukocyte lysates prepared at various times after chemotactic peptide addition. The actin nucleation increases two- to threefold within 15 s after peptide addition, decays to basal levels within 90 s, and is largely independent of cytoplasmic calcium fluxes. The peptide-induced nucleation sites behave as free barbed ends and therefo...

متن کامل

How Wasp Regulates Actin Polymerization

Protrusion of lamellipodia and filopodia from the cell surface requires that actin polymerize locally. Actin polymerization is initiated by numerous agonists, including growth factors, chemoattractants, extracellular matrix, and phagocytic particles. The signaling pathways from the corresponding receptors converge on Rho family GTPases, especially Rac and Cdc42, which induce actin polymerizatio...

متن کامل

Exogenous Nucleation Sites Fail to Induce Detectable Polymerization of Actin in Living Cells

Most nonmuscle cells are known to maintain a relatively high concentration of unpolymerized actin. To determine how the polymerization of actin is regulated, exogenous nucleation sites, prepared by sonicating fluorescein phalloidin-labeled actin filaments, were microinjected into living Swiss 3T3 and NRK cells. The nucleation sites remained as a cluster for over an hour after microinjection, an...

متن کامل

The Chemotactic Defect in Wiskott-Aldrich Syndrome Macrophages Is Due to the Reduced Persistence of Directional Protrusions

Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1989